pkuanvil
    • 版块
    • 标签
    • 帮助
    • 注册
    • 登录
    1. 主页
    2. hitori_bocchi
    • 资料
    • 关注 7
    • 粉丝 3
    • 主题 10
    • 帖子 62
    • 最佳 7
    • 有争议的 0
    • 群组 0

    hitori_bocchi

    @hitori_bocchi

    ぼっち · ざ · ろっく!

    9
    声望
    26
    资料浏览
    62
    帖子
    3
    粉丝
    7
    关注
    注册时间 最后登录

    hitori_bocchi 取消关注 关注

    hitori_bocchi 发布的最佳帖子

    • RE: 曝光一个北京大学政府管理学院2019博的大渣男——黄河瑉

      屏幕截图(1377).png 草?

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • 小波奇提醒您:今晚0: 00 “孤独摇滚” 第九话更新哦

      #9「江ノ島エスカー」
      夏休み中にメンバーから一向に誘われず様子がおかしくなっていくひとりを見て、面々は江の島へ遊びに行くことに……
      https://bocchi.rocks/story/

      📅12/3㈯ 24:00~
      📺TOKYO MXほかにて放送開始

      🔗URLはこちら
      https://youtube.com/watch?v=iI05dQocBtI

      #ぼっち・ざ・ろっくFi_HHspaUAAueIk.jpg

      发布在 Discussion
      hitori_bocchiH
      hitori_bocchi
    • RE: 本站在线人数实在有些少……要不站长亲自捞一下气氛?

      @admin 期待引入LaTex引擎,这样就方便写blog了

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • 小波奇提醒您:今晚23: 00 “孤独摇滚” 第十话更新哦

      ||◤放送開始まで4時間◢||
      TVアニメ「ぼっち・ざ・ろっく!」
      第10話「アフターダーク」🌃
      物語は学校……文化祭!?🏫

      TOKYO MX、BS11、群馬テレビ、とちぎテレビ
      にて、本日24時より放送開始!

      ABEMAは地上波同時配信✅
      https://abema.app/wpz8

      #ぼっち・ざ・ろっくFjmtafAVUAAkJ0t.jpg

      发布在 Discussion
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      @nomana 最近科研太忙了,等放假了再更

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: 一些孤独摇滚的同人/官方图

      @Hero 好诶!(凑够8个字

      发布在 Discussion
      hitori_bocchiH
      hitori_bocchi
    • 小波奇提醒您:今晚23: 00 “孤独摇滚” 第十一话更新哦

      TVアニメ「ぼっち・ざ・ろっく!」
      第11話「十二進法の夕景」🌇

      TOKYO MX、BS11、群馬テレビ、とちぎテレビ
      にて、本日24時より放送開始!

      ◆MRT:25時28分~
      ◆MBS:27時08分~

      ABEMAは地上波同時配信✅
      https://abema.app/B2Ef

      #ぼっち・ざ・ろっくFkFzXU2VEAA5Md8.jpg

      发布在 Discussion
      hitori_bocchiH
      hitori_bocchi

    hitori_bocchi 发布的最新帖子

    • RE: 曝光一个北京大学政府管理学院2019博的大渣男——黄河瑉

      屏幕截图(1377).png 草?

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      @hashhash 可以加贵校碧蓝档案群155199376聊天吹水

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      @hashhash 阿罗娜可爱!

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      @nomana 最近科研太忙了,等放假了再更

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      @nomana 谢谢~

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: 观念差距真的那么大吗?

      我来美国之前和我爸大吵了一架,但是还是来了(
      还觉得我最近花钱太少了,让我别省着

      发布在 Guest
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      今天就更到这里,去看碧蓝档案3周年fes了(

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      It turns out that, for the purposes of constructing lower bound benchmarks for functional estimation, it often suffices to use one-dimensional parametric submodels. A common choice of submodel for nonparametric P\mathcal{P}P is, for some mean-zero function h:Z→Rh: \mathcal{Z} \rightarrow \mathbb{R}h:Z→R,

      pϵ(z)=dP(z){1+ϵh(z)} p_{\epsilon}(z)=d \mathbb{P}(z)\{1+\epsilon h(z)\} pϵ​(z)=dP(z){1+ϵh(z)}

      where ∥h∥∞≤M<∞\|h\|_{\infty} \leq M<\infty∥h∥∞​≤M<∞ and ϵ<1/M\epsilon<1 / Mϵ<1/M so that pϵ(z)≥0p_{\epsilon}(z) \geq 0pϵ​(z)≥0. Note for this submodel the score function is ∂∂ϵlog⁡pϵ(z)∣ϵ=0=∂∂ϵlog⁡{1+ϵh(z)}∣ϵ=0=h(z)\left.\frac{\partial}{\partial \epsilon} \log p_{\epsilon}(z)\right|_{\epsilon=0}=\left.\frac{\partial}{\partial \epsilon} \log \{1+\epsilon h(z)\}\right|_{\epsilon=0}=h(z)∂ϵ∂​logpϵ​(z)​ϵ=0​=∂ϵ∂​log{1+ϵh(z)}​ϵ=0​=h(z). Therefore the Cramer-Rao lower bound for some PϵP_{\epsilon}Pϵ​ in the example one-dimensional submodel Pϵ\mathcal{P}_{\epsilon}Pϵ​ above is given by

      ψ′(Pϵ)2var⁡Pϵ{sϵ(Z)}={∂∂ϵψ(Pϵ)∣ϵ=0}2EPϵ{h(Z)2}. \frac{\psi^{\prime}\left(P_{\epsilon}\right)^{2}}{\operatorname{var}_{P_{\epsilon}}\left\{s_{\epsilon}(Z)\right\}}=\frac{\left\{\left.\frac{\partial}{\partial \epsilon} \psi\left(P_{\epsilon}\right)\right|_{\epsilon=0}\right\}^{2}}{\mathbb{E}_{P_{\epsilon}}\left\{h(Z)^{2}\right\}}. varPϵ​​{sϵ​(Z)}ψ′(Pϵ​)2​=EPϵ​​{h(Z)2}{∂ϵ∂​ψ(Pϵ​)​ϵ=0​}2​.

      Comment: Why one-dimensional submodel? 详细的说明见 Michael Kosorok "Introduction to Empirical Processes and Semiparametric Inference" Chap. 18。

      还需要说明的一点是为什么我们选择了pϵ(z)=dP(z){1+ϵh(z)}p_{\epsilon}(z)=d \mathbb{P}(z)\{1+\epsilon h(z)\}pϵ​(z)=dP(z){1+ϵh(z)}作为submodel(以下内容改写自Mark van der Laan的 STAT C245B Survival Analysis and Causality 的课程材料)。

      We want to define a type of differentiability of ψ:P→Rq\psi: \mathcal{P} \rightarrow \mathbb{R}^{q}ψ:P→Rq, where ψ\psiψ is the target parameter.

      We could use the definition of a directional derivative in direction hhh :

      dψ(P)(h)=ddϵψ(P+ϵh)∣ϵ=0 d \psi(\mathbb{P})(h)=\left.\frac{d}{d \epsilon} \psi(\mathbb{P}+\epsilon h)\right|_{\epsilon=0} dψ(P)(h)=dϵd​ψ(P+ϵh)​ϵ=0​

      However, P+ϵh\mathbb{P}+\epsilon hP+ϵh might not be a path through P\mathcal{P}P, and thus ill defined. We need to define a derivative along paths that are submodels of P\mathcal{P}P.

      Let P\mathcal{P}P be nonparametric. We define a class of paths such that:

      pϵ(z)=dP(z){1+ϵh(z)} p_{\epsilon}(z)=d \mathbb{P}(z)\{1+\epsilon h(z)\} pϵ​(z)=dP(z){1+ϵh(z)}

      Two key assumptions necessary for it to be a proper submodel are as follows:

      • hhh is uniformly bounded
      • EPh(z)=0\mathbb{E}_{P} h(z)=0EP​h(z)=0

      For ϵ∈(−δ,δ)\epsilon \in(-\delta, \delta)ϵ∈(−δ,δ) with δ=1∥h∥∞\delta=\frac{1}{\|h\|_{\infty}}δ=∥h∥∞​1​, this is a submodel.

      To see why, first note that for the paths to be a proper density, we need:

      1. dP(z){1+ϵh(z)}⩾0d \mathbb{P}(z) \{1+\epsilon h(z)\} \geqslant 0dP(z){1+ϵh(z)}⩾0

      Sketch proof:

      Let h(z)h(z)h(z) be uniformly bounded and h(z)=∥h∥∞h(z)=\|h\|_{\infty}h(z)=∥h∥∞​. If ϵ⩽∣δ∣,{1+ϵh(z)}⩾0\epsilon \leqslant|\delta|, \{1+\epsilon h(z)\} \geqslant 0ϵ⩽∣δ∣,{1+ϵh(z)}⩾0. Therefore, for ϵ\epsilonϵ sufficiently small and hhh uniformly bounded, dP(z){1+ϵh(z)}⩾0d \mathbb{P}(z) \{1+\epsilon h(z)\} \geqslant 0dP(z){1+ϵh(z)}⩾0.

      1. ∫{1+ϵh(z)}dP(z)=1\int \{1+\epsilon h(z)\} d \mathbb{P}(z)=1∫{1+ϵh(z)}dP(z)=1

      Sketch proof:

      Note that ∫{1+ϵh(z)}dP(z)=∫dP(z)+ϵ∫h(z)dP(z)=1\int\{1+\epsilon h(z)\} d \mathbb{P}(z)=\int d \mathbb{P}(z)+\epsilon \int h(z) d \mathbb{P}(z)=1∫{1+ϵh(z)}dP(z)=∫dP(z)+ϵ∫h(z)dP(z)=1 since ppp is a proper density and ∫h(z)dP(z)=EPh(z)=0\int h(z) d \mathbb{P}(z)=\mathbb{E}_{P} h(z)=0∫h(z)dP(z)=EP​h(z)=0 by assumption.

      Now consider the score of this submodel.

      δδϵlog⁡dPϵdP∣ϵ=0=δδϵlog⁡{1+ϵh(z)}∣ϵ=0=h(z)1+ϵh(z)∣ϵ=0=h(z). \begin{aligned} \left.\frac{\delta}{\delta \epsilon} \log \frac{d P_{\epsilon}}{d \mathbb{P}}\right|_{\epsilon=0} & =\left.\frac{\delta}{\delta \epsilon} \log \{1+\epsilon h(z)\}\right|_{\epsilon=0} \\ & =\left.\frac{h(z)}{1+\epsilon h(z)}\right|_{\epsilon=0} \\ & =h(z). \end{aligned} δϵδ​logdPdPϵ​​​ϵ=0​​=δϵδ​log{1+ϵh(z)}​ϵ=0​=1+ϵh(z)h(z)​​ϵ=0​=h(z).​

      "Since any lower bound for the submodel Pϵ\mathcal{P}_{\epsilon}Pϵ​ is also a lower bound for P\mathcal{P}P, the best and most informative is the greatest such lower bound. Can we say anything about the best such lower bound for generic functionals and/or submodels?"

      2.2 Pathwise Differentiability

      Recall the Cramer-Rao bound

      {∂∂ϵψ(Pϵ)∣ϵ=0}2EPϵ{sϵ(Z)2} \frac{\left\{\left.\frac{\partial}{\partial \epsilon} \psi\left(P_{\epsilon}\right)\right|_{\epsilon=0}\right\}^{2}}{\mathbb{E}_{P_{\epsilon}}\left\{s_{\epsilon}(Z)^{2}\right\}} EPϵ​​{sϵ​(Z)2}{∂ϵ∂​ψ(Pϵ​)​ϵ=0​}2​

      for submodel Pϵ\mathcal{P}_{\epsilon}Pϵ​ described in the previous subsection. To find the best such lower bound, we would like to optimize the above over all PϵP_{\epsilon}Pϵ​ in some submodels. It is not a priori clear how generally this can be accomplished, since different functionals ψ\psiψ could yield very different numerators. Therefore let us first consider what we can say about the derivative in the numerator, for a large class of pathwise differentiable functionals.

      Namely, suppose the functional ψ:P↦R\psi: \mathcal{P} \mapsto \mathbb{R}ψ:P↦R is smooth, as a map from distributions to the reals, in the sense that it admits a kind of distributional Taylor expansion

      ψ(Pˉ)−ψ(P)=∫φ(z;Pˉ)d(Pˉ−P)(z)+R2(Pˉ,P) \psi(\bar{P})-\psi(P)=\int \varphi(z ; \bar{P}) d(\bar{P}-P)(z)+R_{2}(\bar{P}, P) ψ(Pˉ)−ψ(P)=∫φ(z;Pˉ)d(Pˉ−P)(z)+R2​(Pˉ,P)

      for distributions Pˉ\bar{P}Pˉ and PPP, often called a von Mises expansion, where φ(z;P)\varphi(z ; P)φ(z;P) is a mean-

      zero, finite-variance function satisfying ∫φ(z;P)dP(z)=0\int \varphi(z ; P) d P(z)=0∫φ(z;P)dP(z)=0 and ∫φ(z;P)2dP(z)<∞\int \varphi(z ; P)^{2} d P(z)<\infty∫φ(z;P)2dP(z)<∞, and R2(Pˉ,P)R_{2}(\bar{P}, P)R2​(Pˉ,P) is a second-order remainder term (which means it only depends on products or squares of differences between Pˉ\bar{P}Pˉ and P)P)P).

      Intuitively, the von Mises expansion above is just an infinite-dimensional or distributional analog of a Taylor expansion, with φ(z;Q)\varphi(z ; Q)φ(z;Q) acting as a usual derivative term; it describes how the functional ψ\psiψ changes locally when the distribution changes from PPP to Pˉ\bar{P}Pˉ. For example, when Z∈{1,…,k}Z \in\{1, \ldots, k\}Z∈{1,…,k} is discrete and so Pˉ\bar{P}Pˉ and PPP have kkk countable components, the von Mises expansion reduces to a standard multivariate Taylor expansion with

      R2(Pˉ,P)=ψ(pˉ1,…,pˉk)−ψ(p1,…,pk)−∑j∂∂tjψ(t1,…,tk)∣t=pˉ(pˉj−pj). R_{2}(\bar{P}, P)=\psi\left(\bar{p}_{1}, \ldots, \bar{p}_{k}\right)-\psi\left(p_{1}, \ldots, p_{k}\right)-\left.\sum_{j} \frac{\partial}{\partial t_{j}} \psi\left(t_{1}, \ldots, t_{k}\right)\right|_{t=\bar{p}}\left(\bar{p}_{j}-p_{j}\right). R2​(Pˉ,P)=ψ(pˉ​1​,…,pˉ​k​)−ψ(p1​,…,pk​)−j∑​∂tj​∂​ψ(t1​,…,tk​)​t=pˉ​​(pˉ​j​−pj​).
      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      不打算更directional derivative & pathwise derivative for functional和更多的半参理论的东西了,实在是太多了,够写一本书的。这篇文章本来也是一个偏实用的指南,还是不想太偏离主旨...

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi
    • RE: [读书笔记][更新中] Aad van der Vaart "Asymptotic Statistics"

      半参后面的理论确实有点复杂,会涉及一些泛函的东西,我不打算写的过于理论,更多还是intuition吧

      发布在 BBS
      hitori_bocchiH
      hitori_bocchi